

MA 102: Linear Algebra and Integral Transforms Tutorial Sheet - 2

Second Semester of Academic Year 2019-2020

- 1. Let $L(S) = \operatorname{span}(S)$ denote the subspace spanned by S in a vector space V, then show that:
 - (a) L(S) is the subspace containing S.
 - (b) if $S \subseteq T \subseteq V$ and T is a subspace of V then, $L(S) \subseteq T$. (i.e. L(S) is the smallest subspace containing S).
- 2. Show that the set S containing all $n \times n$ symmetric and anti-symmetric matrices forms a spanning set for the vector space $M_n(\mathbb{R})$ of all $n \times n$ real matrices.
- 3. Give argument to show that the vector space of all real valued functions on \mathbb{R} is spanned by the set containing all even and odd functions.
- 4. Write the vector $v = (a, b, c) \in \mathbb{R}^3$ as linear combination of the vectors $u_1 = (1, 2, 0), u_2 =$ (-1, 1, 2) and $u_3 = (3, 0, -4)$.
- 5. Examine in each case which of the following sets are L.I. over \mathbb{R} :

(a)
$$\left\{ \begin{pmatrix} 1 & -3 \\ -2 & 4 \end{pmatrix}, \begin{pmatrix} -2 & 6 \\ 4 & -8 \end{pmatrix} \right\}$$
 in $M_2(\mathbb{R})$.

(b)
$$\{x^3 + 2x^2, -x^2 + 3x + 1, x^3 - x^2 + 2x - 1\}$$
 in $P_3(\mathbb{R})$.

(c)
$$\{(1,-1,2),(2,0,1),(-1,2,-1)\}$$
 in \mathbb{R}^3 .

6. Check the following sets $\{f,g\}$ for linear independence, considered as subsets of the vector space of all real valued functions on \mathbb{R} , where:

(a)
$$f(x) = x$$
, $g(x) = |x|$.

(b)
$$f(x) = cos(x), g(x) = sin(x).$$

(c)
$$f(x) = e^{rx}, g(x) = e^{sx}$$
 for r not equal to s .

7. Let A be 3×3 matrix and let

$$v = \begin{pmatrix} 1 \\ 2 \\ -2 \end{pmatrix}$$
 and $w = \begin{pmatrix} 2 \\ -1 \\ 3 \end{pmatrix}$. Suppose that $Av = v$ and $Aw = 2w$.

Then find the vector $A^5 \begin{pmatrix} -1 \\ 8 \\ -9 \end{pmatrix}$.

- 8. Let $S = \{(1+i,2i,2), (1,1+i,1-i)\} \subset \mathbb{C}^3$. Check the linear independence of S over \mathbb{R} .
- 9. Is the set S considered in problem 7 L.I. over \mathbb{C} ?
- 10. Let $v_1=(a,b,c), v_2=(d,e,f), v_3=(g,h,i)$ be any three vectors in \mathbb{R}^3 . Show that the set $\{v_1, v_2, v_3\}$ is L.D. iff there exists a non zero vector $x = (x_1, x_2, x_3)$ s.t. Ax = 0, where A

is the matrix
$$\begin{bmatrix} a & d & g \\ b & e & h \\ c & f & i \end{bmatrix}$$
.

- 11. Let V be the vector space and $S_1 \subseteq S_2 \subseteq V$ be any two subsets, then prove that:
 - (a) If S_2 is linearly independent set then so is S_1 .
 - (b) If S_1 is linearly dependent set then so is S_2 .

- 12. Prove that any set S in a vector space V containing the 0 vector is linearly dependent.
- 13. Let S be the L.I. subset of a vector space V and $v \notin S$. Prove that $S \cup \{v\}$ is L.I. $\iff v \notin span(S)$.
- 14. Find the value(s) of h for which the following set of vectors

$$v_1 = \begin{pmatrix} 1 \\ 0 \\ 0 \end{pmatrix}, v_2 = \begin{pmatrix} h \\ 1 \\ -h \end{pmatrix} \text{ and } v_3 = \begin{pmatrix} 1 \\ 2h \\ 3h + 1 \end{pmatrix}$$

- are linearly independent.
- 15. Let $\{v_1, v_2, v_3\}$ be a basis of vector space V. Show that the set $\{v_1, v_1 + v_2, v_1 + v_2 + v_3\}$ is also a basis of V.
- 16. Show that (1,4) and (0,1) form a basis of \mathbb{R}^2 over \mathbb{R} .
- 17. Find a basis and hence give the dimension of each of the following vector space containing all $n \times n$ real matrices which are:
 - (a) Diagonal.
 - (b) Anti-symmetric.
 - (c) Having trace zero.
 - (d) Upper triangular.
- 18. Give example of a set V which forms vector space over both \mathbb{R} and \mathbb{C} and both having different dimensions. Is this always true for any such vector space V?
- 19. Find a basis and dimension of following subspace S of vector space of polynomials $P_n(\mathbb{R})$, where:
 - (a) $S = \{ p(x) \in P_n(\mathbb{R}) | p(0) = 0 \}.$
 - (b) $S = \{p(x) \in P_n(\mathbb{R}) | p(x) \text{ is an odd function } \}.$
 - (c) $S = \{p(x) \in P_n(\mathbb{R}) | p(0) = p''(0) = 0\}.$
- 20. Check whether the vector space V = P(t) of all real polynomials over \mathbb{R} is finite dimensional or not.
- 21. Find a basis and dimension for the subspaces W_1 and W_2 of \mathbb{R}^5 , where:
 - (a) $W_1 = \{(a_1, a_2, a_3, a_4, a_5) \in \mathbb{R}^5 \mid a_1 a_3 a_4 = 0\}.$
 - (b) $W_2 = \{(a_1, a_2, a_3, a_4, a_5) \in \mathbb{R}^5 \mid a_2 = a_3 = a_4, a_1 + a_5 = 0\}.$
- 22. Suppose M is an $n \times n$ upper-triangular matrix. If the diagonal entries of M are all non-zero, then prove that the column vectors are linearly independent. Does the conclusion hold if we do not assume that M has non-zero diagonal entries?
- 23. Let V and W be following subspaces of \mathbb{R}^4 : $V = \{(a, b, c, d) \mid b 2c + d = 0\}$, $W = \{(a, b, c, d) \mid a = d, b = 2c\}$. Find bases and the dimensions of V, W and $V \cap W$. Hence prove that $\mathbb{R}^4 = V + W$.