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. Let L(S) = span(S) denote the subspace spanned by S in a vector space V', then show

that:

(a) L(9S) is the subspace containing S.
(b) if S C T CV and T is a subspace of V then, L(S) C T. (i.e. L(S) is the smallest
subspace containing ).

. Show that the set S containing all n x n symmetric and anti-symmetric matrices forms a

spanning set for the vector space M, (R) of all n x n real matrices.

. Give argument to show that the vector space of all real valued functions on R is spanned

by the set containing all even and odd functions.

. Write the vector v = (a,b,c) € R? as linear combination of the vectors u1; = (1,2,0),us =

(—1,1,2) and uz = (3,0, —4).

. Examine in each case which of the following sets are L.I. over R :
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(b) {a® +22%, —2® 4+ 3z + 1, 2% — 2® + 22 — 1} in P3(R).
(c) {(1,-1,2),(2,0,1),(-1,2,-1)} in R?.

. Check the following sets { f, g} for linear independence, considered as subsets of the vector

space of all real valued functions on R, where:

(a) f(z) =w, g(x)=|z].
(b) f(z )—COS( ):9(x) = sin(z).

(¢) f(z)=e"" g(x) = e for r not equal to s.

Let A be 3 x 3 matrix and let
2

and w = | —1|. Suppose that Av = v and Aw = 2w.
3
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Then find the vector A% | 8
-9

. Let S ={(1+414,24,2),(1,1+4,1—14)} C C3. Check the linear independence of S over R.

. Is the set S considered in problem 7 L.I. over C?

Let v1 = (a,b,c),vo = (d,e, f),v3 = (g, h,i) be any three vectors in R3. Show that the set
{v1,v2,v3} is L.D. iff there exists a non zero vector x = (x1,x2,x3) s.t. Ax =0, where A

a d g
is the matrix | b e h
c f i

Let V be the vector space and 51 C So C V be any two subsets, then prove that:

(a) If Sy is linearly independent set then so is Sj.
(b) If Sy is linearly dependent set then so is So.
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Prove that any set S in a vector space V' containing the 0 vector is linearly dependent.

Let S be the L.I. subset of a vector space V' and v ¢ S. Prove that SU {v} is LI. «<—
v ¢ span(S).

Find the value(s) of h for which the following set of vectors

1 h 1
vi=[0], vy = 1 and vy = 2h
0 —h 3h+1

are linearly independent.

Let {v1,v92,v3} be a basis of vector space V. Show that the set {vi, v + vo,v1 + vy + v3}
is also a basis of V.

Show that (1,4) and (0, 1) form a basis of R? over R.

Find a basis and hence give the dimension of each of the following vector space containing
all n x n real matrices which are:

Diagonal.

(a)

(b) Anti-symmetric.
)
)

Give example of a set V which forms vector space over both R and C and both having
different dimensions. Is this always true for any such vector space V7

Find a basis and dimension of following subspace S of vector space of polynomials P, (R),
where:

(a) S ={p(x) € Pu(R)| p(0)=0}.
(b) S ={p(x) € P,(R)| p(z)is an odd function }.
(¢) 5= {p(x) € P(R)] p(0) =p"(0) = 0}.

Check whether the vector space V' = P(t) of all real polynomials over R is finite dimensional
or not.

Find a basis and dimension for the subspaces W; and Wy of R?, where:
(a) Wy = {(al,ag,ag,a4,a5) e R? ‘ a1—a3—a4:O}.
(b) W2 = {(al,ag,ag,a4,a5) S R5 ‘ ag = a3 = 4,01 + a5 = 0}

Suppose M is an n X n upper-triangular matrix. If the diagonal entries of M are all non-
zero, then prove that the column vectors are linearly independent. Does the conclusion
hold if we do not assume that M has non-zero diagonal entries?

Let V and W be following subspaces of R* :
V ={(a,b,c,d) | b—2c+d=0}, W ={(a,b,c,d) | a=d, b=2c}. Find bases and the
dimensions of V, W and V N W. Hence prove that R* =V + W.
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