

$\ensuremath{\mathsf{MA}}$ 102 : Linear Algebra and Integral Transforms Tutorial Sheet - 4

Second Semester of Academic Year 2019-2020

1. Determine which of the following mappings are linear.

(a)
$$T: \mathbb{R}^3 \to \mathbb{R}^2$$
, $T \begin{bmatrix} x \\ y \\ z \end{bmatrix} = \begin{bmatrix} xy \\ yz \end{bmatrix}$.

(b)
$$T: \mathbb{R}^3 \to \mathbb{R}^3$$
, $T \begin{bmatrix} x \\ y \\ z \end{bmatrix} = \begin{bmatrix} x+1 \\ y \\ z \end{bmatrix}$.

- (c) Transpose mapping $T: \mathbb{R}^{m \times n} \to \mathbb{R}^{n \times m}, T(A) = A^t$.
- (d) Trace mapping $tr: \mathbb{R}^{m \times n} \to \mathbb{R}$, tr(A) = trace(A).
- (e) The evaluation mapping $\varepsilon_u : \mathbb{R}[x] \to \mathbb{R}$, $u \in \mathbb{R}$, defined by $\varepsilon_u(a_0 + a_1x + \dots + a_nx^n) = a_0 + a_1u + \dots + a_nu^n$, where $\mathbb{R}[x]$ is the set of all polynomials over \mathbb{R} .
- (f) $T: \mathbb{R}[x] \to \mathbb{R}^{\infty}$, defined by $T(a_0 + a_1x + \cdots + a_nx^n) = (a_0, a_1, \cdots, a_n, 0, 0, \cdots)$, where \mathbb{R}^{∞} is the set of all real sequences.
- 2. Find out whether the following statements are true or false.
 - (a) The differential mapping $\mathcal{D}: \mathcal{C}^1(\mathcal{I}) \to \mathcal{C}^0(\mathcal{I})$, defined by $\mathcal{D}(f(x)) = f'(x)$ is injective, where \mathcal{I} is an open interval in \mathbb{R} .
 - (b) The mapping defined in Q.1(f) is surjective but not injective.
 - (c) The evaluation mapping is surjective.
 - (d) The trace mapping is injective but not surjective.
- 3. Find Null space and Range space of the following mappings.

(a)
$$S: \mathbb{R}^n \to \mathbb{R}^n$$
 such that $S \begin{bmatrix} x_1 \\ \cdot \\ \cdot \\ x_{n-1} \\ x_n \end{bmatrix} = \begin{bmatrix} 0 \\ x_1 \\ x_2 \\ \cdot \\ \cdot \\ x_{n-1} \end{bmatrix}$

- 4. Let T be a linear operator on a vector space V, let $v \in V$ and let m be a positive integer such that $T^m v = 0$ and $T^{m-1} v \neq 0$. Then show that $v, Tv, ..., T^{m-1} v$ are linearly independent.
- 5. Consider the vector space $\mathbb{P}_2(x)$ of polynomials with real coefficients and of order at most 2. Find the rank and nullity of the following linear transformation $T: \mathbb{P}_2(x) \to M_{2\times 2}(\mathbb{R})$ defined by $T(p(x)) = \begin{bmatrix} p(1) p(2) & 0 \\ 0 & p(0) \end{bmatrix}$.

- 6. Let $T: \mathbb{R}^2 \to \mathbb{R}^2$ first reflects points through x-axis and then reflects points through the line y = x. Find the mapping T.
- 7. Find a 2×2 singular matrix B that maps $(1,1)^t$ to $(1,3)^t$.
- 8. Let V and W be finite-dimensional vector spaces and $T: V \to W$ be linear.
 - (a) Prove that if dim(V) < dim(W), then T cannot be onto.
 - (b) Prove that if dim(V) > dim(W), then T cannot be one-to-one.
- 9. Find a linear map $F: \mathbb{R}^3 \to \mathbb{R}^4$ whose image is spanned by (1, 2, 0, -4) and (2, 0, -1, -3).
- 10. (a) Give an example of linear transformations T and U such that N(T) = N(U) and R(T) = R(U).
 - (b) Give an example of a linear transformation $T: \mathbb{R}^n \to \mathbb{R}^n$ such that N(T) = R(T).
- 11. Let $T: \mathbb{R}^3 \to \mathbb{R}^3$ be a linear transformation such that T(1,0,0) = (1,0,0), T(1,1,0) = (1,1,1), T(1,1,1) = (1,1,0). Find $T(x,y,z), \ Ker(T), \ R(T)$. Prove that $T^3 = T$.
- 12. Let V be a finite dimensional vector space and $S, T \in L(V)$. Show that if ST is identity operator, then so is TS. Give an counter example showing that the given statement may not be true for infinite dimensional vector spaces.
- 13. Let $T: \mathbb{R}^3 \to \mathbb{R}^2$ and let $S: \mathbb{R}^2 \to \mathbb{R}^3$. Show that ST is not injective.
- 14. Consider the matrix mapping $T: \mathbb{R}^4 \to \mathbb{R}^3$ such that T(X) = AX, where $A = \begin{bmatrix} 1 & 2 & 3 & 1 \\ 1 & 3 & 5 & -2 \\ 3 & 8 & 13 & -3 \end{bmatrix}$. Find a basis and the dimension of the image of T as well as of the kernel of T.
- 15. Prove that there exists a linear transformation $T: \mathbb{R}^2 \to \mathbb{R}^3$ such that T(1,1) = (1,0,2) and T(2,3) = (1,1,4). What is T(8,11)?

 $\star\star\star\star\star \times \operatorname{End} \star\star\star\star\star$