

MA 102 : Linear Algebra and Integral Transforms Tutorial Sheet - 5 Second Semester of Academic Year 2019-2020

- 1. Suppose the x and y axes of \mathbb{R}^2 are rotated counter-clockwise 45° so that the new x and y axes are along the line y = x and y = -x, respectively. Then
 - (a) Find the change of basis matrix P.
 - (b) Find the co-ordinates of the point (5,6) under the given rotation.
- 2. Consider the linear transformation T on \mathbb{R}^2 defined by T(x,y) = (2x 3y, x + 4y) and the bases $E = \{(1,0),(0,1)\}$ and $S = \{(1,3),(2,5)\}$.
 - (a) Find the matrix A representing T relative to the bases E and S.
 - (b) Find the matrix B representing T relative to the bases S and E.
 - (c) How are the matrices A and B related?
- 3. Consider the vector space $\mathbb{P}_3(x)$ of polynomials with real coefficients and of order at most 3. The differential operator \mathcal{D} is a linear operator on $\mathbb{P}_3(x)$. Find the matrix representing \mathcal{D} with respect to basis $\mathcal{B} = \{1 + x, x + x^2, x^2 + x^3, x + x^3\}$.
- 4. Let V be an n-dimensional vector space over \mathbb{R} and let $T \in L(V)$, such that $(T \lambda I)^n = 0$, $\lambda \in \mathbb{R}$ and $(T \lambda I)^{n-1} \neq 0$. Prove that there is a basis \mathcal{B} such that

$$[T]_{\mathcal{B}} = \begin{bmatrix} \lambda & 1 & & 0 \\ & \ddots & \ddots & \\ & & \ddots & 1 \\ 0 & & & \lambda \end{bmatrix}.$$

- 5. Let T be a linear operator on a finite dimensional vector space V over \mathbb{R} . Prove that if the matrix representation of T with respect to all bases of V is the same, Then $T = \alpha I$ for some $\alpha \in \mathbb{R}$.
- 6. Prove that if $T \in L(V)$, dim(V) is finite and rank T = 1, then det(I + T) = 1 + trT.
- 7. Prove that the characteristic roots of a triangular matrix are just the diagonal elements of the matrix.
- 8. (a) Show that a diagonalizable matrix having only one eigenvalue is a scalar matrix.
 - (b) Prove that $\begin{bmatrix} 1 & 1 \\ 0 & 1 \end{bmatrix}$ is not diagonalizable.
- 9. Find out whether the following statement is true or false.
 - (a) Any two eigenvectors are linearly independent.
 - (b) The sum of two eigenvalues of a linear operator T is also an eigenvalue of T.

- (c) The sum of two eigenvectors of a linear operator T is also an eigenvectors of T.
- (d) Similar matrices always have same eigenvalues.
- (e) Similar matrices always have same eigenvectors.
- (f) If λ is characteristic root of the matrix A, show that $k + \lambda$ is a characteristic root of the matrix A + kI where I is an identity matrix.
- 10. If $A = \begin{bmatrix} 2 & 1 & 0 \\ 0 & 2 & 1 \\ 0 & 0 & 2 \end{bmatrix}$, verify Cayley-Hamilton theorem. Hence find A^{-1} .
- 11. Let T be a linear operator on a vector space V, and let λ be an eigenvalue of T. A vector $v \in V$ is an eigenvector of T corresponding to λ if and only if $v \neq 0$ and $v \in N(T \lambda I)$.
- 12. For each linear operator T on V, find the eigenvalues of T and an ordered basis β for V such that $[T]_{\beta}$ is diagonal matrix.
 - (a) $V = \mathbb{R}^2$ and T(a, b) = (-2a + 3b, -10a + 9b).
 - (b) $V = \mathbb{P}_2$ and T(f(x)) = xf'(x) + f(2)x + f(3).
 - (c) $V = M_{2 \times 2}$ and $T(\begin{bmatrix} a & b \\ c & d \end{bmatrix} = \begin{bmatrix} d & b \\ c & a \end{bmatrix}$
 - (d) $V = M_{2\times 2}$ and $T(A) = A^t + 2.tr(A).I_2$.

**** End ****