• Year 2015
  1. Srikumar Panda, S. C. Martha and A. Chakrabarti, (2015), A modified approach to numerical solution of Fredholm integral equations of the second kind, Applied Mathematics and Computation, Vol 271, pp. 102-112 ( Elsevier Publication, DOI: 10.1016/j.amc.2015.08.111).
  2. S. Chakraborty, Ramesh A. and P. S. Dutta, (2015), Toxic Phytoplankton as a Keystone Species in Aquatic Ecosystems: Stable Coexistence to Biodiversity, OIKOS, Wiley, Early View (Online version), DOI: 10.1111/oik.02322.
  3. T. Banerjee, P. S. Dutta and A. Gupta, (2015), Mean-field dispersion induced spatial synchrony, oscillation and amplitude death, and temporal stability in an ecological model, Physical Review E, APS, Vol. 91, 052919-1-13, DOI: 10.1103/PhysRevE.91.052919.
  4. K. Kaur and M. Khan, (2015), Units in F D2p, Vol. 86, 3-4.
  5. P. Redhu, A. K. Gupta, (2015), Jamming transitions and the effect of interruption probability in a lattice traffic flow model with passing, Physica A, 421, 249–260.
  7. S. Pramanik, and M. Mishra, (2015), Effect of Peclet number on miscible rectilinear displacement in a Hele-Shaw cell, Physical Review E 91, 033006.
  8. S. Ganguly, S. Sarkar, T. Hota, and M. Mishra, (2015), Thermally developing combined electroosmotic and pressure-driven flow of nanofluids in a microchannel under the effect of magnetic field, Chem. Eng. Sci. Vol. 126, 10-21.
  9. Srikumar Panda, S. C. Martha and A. Chakrabarti, (Jan, 2015), Three-layer fluid flow Over small Obstruction on the bottom of an Infinite Channel, The ANZIAM Journal, 56(3), 248-274 (DOI:10.1017/S1446181114000480, Cambridge University Press).
  • Year 2014
  1. I. Dhiman, A. K. Gupta, (2014), Effect of coupling strength on a two-lane partially asymmetric coupled TASEP with Langmuir Kinetics, Physical Review E, 90, 012114.
  2. I. Dhiman, A. K. Gupta, (2014), Two-channel totally asymmetric simple exclusion process with Langmuir kinetics: The role of coupling constant, Euro Physics Letters, 107, 20007.
  3. A. K. Gupta, I. Dhiman, (2014), Asymmetric coupling in two-lane simple exclusion process with Langmuir Kinetics: phase diagrams and boundary layers, Physical Review E, 89, 022131.
  4. A. K. Gupta, I. Dhiman, (2014), Analyses of continuum traffic flow model for a non-lane-based system, International Journal of Modern Physics C, 25 (10), 1450045.
  5. A. K. Gupta, I. Dhiman, (2014), Phase diagram of a continuum traffic flow model with a static bottleneck, Nonlinear Dynamics, 79 (1), 663.
  6. C. Rana, and M. Mishra, (2014), Fingering dynamics on the adsorbed solute with influence of less viscous and strong sample solvent, J. Chem. Phys., 141, 214701.
  7. T. Chatterjee and S. Gun, (2014), On the zeros of Generalized Hurwitz zeta functions, J. Number Theory, 145, 352--361.
  8. Y. Sharma, K.C. Abbott, P. S. Dutta and A. K. Gupta, (2014), Stochasticity and bistability in insect outbreak dynamics, Theoretical Ecology, Springer, 2014. (Article in Press) DOI: 10.1007/s12080-014-0241-9.
  9. P. S. Dutta, B. W. Kooi and U. Feudel, (2014), Multiple Resource Limitation: Non-equilibrium Coexistence of Species in a Competition Model using a Synthesizing Unit, Theoretical Ecology, Springer, Vol. 7, pp. 407-421, 2014 (DOI: 10.1007/s12080-014-0228-6).
  10. N. Blackbeard, S. Wieczorek, H. Erzgraber and P. S. Dutta, (2014), From Synchronisation to Persistent Optical Turbulence in Laser Arrays, Physica D, Elsevier, Vol. 286-287, pp. 43-58, 2014 (DOI: 10.1016/j.physd.2014.07.007).
  11. Srikumar Panda and S. C. Martha, (2014), Oblique Wave Scattering by Undulating Porous Bottom in a two-layer Fluid: Fourier transform approach, Geophysical and Astrophysical Fluid Dynamics, 108(6), 587-614 (DOI: 10.1080/03091929.2014.953948, Taylor & Francis).
  12. K. Kaur and M. Khan, (2014), Units in F2D2p, Journal of Algebra and Its Applications, 13(02):1350090.
  13. S Panda, RK Singla, R Das and SC Martha, (2014), Identification of design parameters in a solar collector using inverse heat transfer analysis, Energy Conversion and Management 88, 27-39,(Elsevier Publications).
  14. A.K. Gupta and P. Redhu, (2014), Analyses of the driver’s anticipation effect in a new lattice hydrodynamic traffic flow model with passing, Nonlinear Dynamics, DOI 10.1007/s11071-013-1183-2.
  15. S. Pramanik and M. Mishra, (2014), Comparison of Korteweg stresses effect on the fingering instability of higher or less viscous miscible slices: Linear stability analysis, Chemical Engineering Science (in press).
  16. A. Bhowmik, S. Panda, R. Das, R. Repaka and S.C. Martha, (2014), Inverse analysis of conductive-convective wet triangular fin for predicting thermal properties and fin dimensions, Inverse Problems in Science & Engineering, 22(8), 1367-1393,(Taylor & Francis).
  17. S. Vikash and M. Prabhakar, (2014), An Unknotting Sequence for Torus Knots, accepted in Topology and its Applications (Elsevier Publications).
  18. S. Panda, A. Bhowmik, R. Das, R. Repaka, S. C. Martha, (2014), Application of Homotopy Analysis Method and Inverse Solution of a Rectangular Wet Fin, Energy Conversion and Management, 80, 305-318, 2014 (Elsevier Publications).
  • Year 2013
  1. B.W. Kooi, P.S. Dutta and U. Feudel, (2013), Resource Competition: A Bifurcation Theory Approach, Mathematical Modelling of Natural Phenomena, Cambridge University Press, Vol. 8, No. 6, pp. 1–21,(DOI: 10.1051/mmnp/20138602).
  2. S. Panda, S. S. Samantaray and S. C. Martha, (2013), Wave Scattering by Small Undulation on the Porous Bottom of an Ocean in the Presence of Surface Tension, ISRN Oceanography, Vol. 2013, Article ID 504879, 6 pages(Published by Hindawi)
  3. S. Panda and S. C. Martha, (2013), Interaction of water waves with small undulation on a porous bed in a two-layer ice-covered fluid, Journal of Marine Science and Application, Vol. 12( 4), 381-392 ( Springer Publisher).
  4. A. K.  Gupta and P. Redhu, (2013), Jamming transition of a two-dimensional traffic dynamics with consideration of optimal current difference, Physics Letters A, Vol. 377, Issue 34-36, Pages 2027-2033, .
  5. A. K. Gupta, (2013), A section approach to a traffic flow model on networks Int. J. of Modern Physics C, Vol. 24, Issue 5,1350018.
  6. S. Pramanik, and M. Mishra, (2013), A Linear Stability Analysis of Korteweg Stresses Effect on Miscible Viscous Fingering in Porous Media, Physics of Fluids, Vol. 25, 074104.
  7. M. Mishra ,C. Rana,A. De Wit and M. Martin, (2013), Influence of a strong sample solvent on analyte dispersion in chromatographic columns,Journal of Chromatography A, Vol. 1297,46-55.
  8. V. Siwach and M. Prabhakar, (2013), A Sharp Upper Bound for Region Unknotting Number of Torus Knots, Journal of Knot Theory and Its Ramifications, Vol. 22, No. 5, 21 pages.
  9. A. K. Gupta and I. Dhiman, (2013), Coupling of two asymmetric exclusion processes with open boundaries, Physica A: Statistical Mechanics and its Applications, Vol. 392, Issue 24, pp. 6314-6329.
  10. A. K. Gupta, P. Redhu, (2013), Analyses of driver's anticipation effect in sensing relative flux in a new lattice model for two-lane traffic system, Physica A, 392, (22), 5622-5632.
  11. A. K. Gupta, P. Redhu, (2013), Analysis of a modified two-lane lattice model by considering the density difference effect, Communications in Nonlinear Science and Numerical Simulation, 19(5), 1600–1610.

  • Year 2012
  1. A. Chakrabarti and S. C. Martha, (2012), Methods of Solution of Singular Integral Equations, Mathematical Sciences, Vol. 6, 15 pages (Published by Springer Open).
  2. M.  Mishra, A. Thess, and A. De Wit, (2012), Influence of a simple magnetic bar on buoyancy-driven fingering of traveling autocatalytic reaction fronts. Physics of Fluids 24 (2012): 124101-13.
  3. M. Mishra, A. De Wit, and K. C. Sahu, (2012), Double diffusive effects on pressure-driven miscible displacement flows in a channel. Journal of Fluid Mechanics 712 (2012): 579-597.
  4. A. K. Gupta and S. Sharma, (2012), Analysis of wave properties of a new two-lane continuum model with consideration of the coupling effect, Chin. Phys. B, Vol. 21, No. 1, 015201.
  5. D. Tripathi, and O. A. Bég, (2012), A Study of Unsteady Physiological Magneto-fluid Flow and Heat Transfer through a Finite Length Channel by Peristaltic Pumping ,Proceedings of the Institution of Mechanical Engineers, Part H, Journal of Engineering in Medicine : 1-14.
  6. D. Tripathi , O. A. Bég , and  J. L. Curiel-Sosa, (2012), Homotopy Semi-Numerical Simulation of Peristaltic Flow of Generalized Oldroyd-B Fluids with Slip Effects ,Computer Methods in Biomechanics and Biomedical Engineering 1, 1-10.
  7. D. Tripathi, (2012), Peristaltic Hemodynamic Flow of Couple-Stress Fluids Through a Porous Medium with Slip Effect. Transport in Porous Media 92.3 : 559-572.
  8. D. Tripathi, (2012), A Mathematical Study on Three Layered Oscillatory Blood Flow Through Stenosed Arteries." Journal of Bionic Engineering 9.1 : 119-131.
  9. D. Tripathi, (2012), A Mathematical Model for Swallowing of Food Bolus through the Oesophagus Under the Influence of Heat Transfer. International Journal of Thermal Sciences 51:91-101.

  • Year 2011
  1. S. C. Martha, S. N. Bora, A. Chakrabarti, (2011), Eigenfunction expansion method for water wave scattering by small undulation, AIP Conference Proceedings, Vol. 1376 (Recent Progresses in Fluid Dynamics Research),pages 258-260 (Published by American Institute of Physics).
  2. A. Chakrabarti and  S. C. Martha, (2011), A review on the mathematical aspects of fluid flow problems in an infinite channel with arbitrary bottom topography, Journal of Applied Mathematics and Informatics, 29 (No. 5-6), 1583-1602.

  • Year 2010
  1. M. Mishra, P. M.  J. Trevelyan,  C. Almarcha and  A. De Wit, (2010), Influence of double diffusive effect on miscible viscous fingering, Physical Review Letters, Vol. 105, 204501.
  2. R. Maes, G. Rousseaux, B. Scheid,  M. Mishra,  P. Colinet and A. De Wit,(2010), Experimental study of dispersion and miscible viscous fingering of initially circular samples in Hele- Shaw cells,Physics of Fluids 22, 123104 .
  3. M. Mishra, M. Martin and  A. De Wit, (2010), Influence of miscible viscous fingering with negative log-mobility ratio on spreading of adsorbed analytes, Chem. Engg. Sci. Vol. 65 2392-2398.
  4. A. K. Gupta and S. Sharma, (2010), Nonlinear analysis of traffic jams in an anisotropic continuum model , Chin. Phys. B, Vol. 19, No. 11 , 110503.