Area of Research: Microelectronics and VLSI Design

Serial	SID	Full name	
1	21291	Deepak Mittal	
2	21325	Abhishekha Chandra Dubey	
3	21381	Syed Misbah Shafi	
4	21391	jyoti khichar	
5	21401	SHALU RANI	
6	21437	RAVINDER KUMAR	
7	21464	SHELJA	
8	21507	RITESH KUMAR PANDEY	
9	21569	Chetali Yadav	
10	21585	Abhishek Kumar Chaudhary	
11	21597	MUSKAN AGARWAL	
12	21651	MANDEEP SINGH	
13	21661	Sunil Kumar	
14	21665	Pratistha Pal	
15	21678	INDERJIT SINGH	
16	21683	Saniay Kumar	
17	21712	imtiyaz	
18	21715	TASWINI	
19	21729	SWAGATA PANCHANAN	
20	21732	SUBABHI GAUTAM	
21	21751		
22	21853	sumit kumar	
23	21885		
24	21903	MANDA NARESH	
25	21904		
26	21908	ashraf maniyar	
27	21900		
28	22019	Vishal Narula	
20	22015	GEETANIALI	
30	22070		
31	22075		
32	22057		
32	22150	ANSTUU SAKSWAI	
3/	22107		
25	22255		
35	22230		
27	22200		
28	22315		
20	22323		
40	22332		
40	22375		
41	22599		
42	22404	SAPINA YADAV	
43	22406		
44	22416		
45	22435		
40	22467		
4/	22475		
48	22495		
49	22504		
50	22505		
51	22564		
52	22566	THUTA PAVAN KUMAR	

List of Regular PhD candidates: for area of research Microelectronics and VLSI Design

List of Part-time PhD candidate: for area of research Microelectronics and VLSI Design

Serial	SID	Full name
1	21361	AMIT SINGH
2	21433	KISHORE AJAY KUMAR AYYALA
3	22454	Abdul Manan

List of Direct PhD candidate: for area of research Microelectronics and VLSI Design

Serial	SID	Full Name
1	10189	MEGHNA

Note:

Any applicant who satisfies the above mentioned criteria, but his/her name is not in the list can also appear for written and/or personal interview on mentioned dates. Provided he/she has already applied with in due date.

Syllabus of PhD written examination: for area of research Microelectronics and VLSI Design

Section 1: Networks, Signals and Systems

Network solution methods: nodal and mesh analysis; Network theorems: superposition, Thevenin and Norton's, maximum power transfer; Wye-Delta transformation; Steady state sinusoidal analysis using phasors; Time domain analysis of simple linear circuits; Solution of network equations using Laplace transform; Frequency domain analysis of RLC circuits; Linear 2-port network parameters: driving point and transfer functions; State equations for networks.

Continuous-time signals: Fourier series and Fourier transform representations, sampling theorem and applications; Discrete-time signals: discrete-time Fourier transform (DTFT), DFT, FFT, Z-transform, interpolation of discrete-time signals; LTI systems: definition and properties, causality, stability, impulse response, convolution, poles and zeros, parallel and cascade structure, frequency response, group delay, phase delay, digital filter design techniques.

Section 2: Electronic Devices

Energy bands in intrinsic and extrinsic silicon; Carrier transport: diffusion current, drift current, mobility and resistivity; Generation and recombination of carriers; Poisson and continuity equations; P-N junction, Zener diode, BJT, MOS capacitor, MOSFET, LED, photo diode and solar cell; Integrated circuit fabrication process: oxidation, diffusion, ion implantation, photolithography and twin-tub CMOS process.

Section 3: Analog Circuits

Small signal equivalent circuits of diodes, BJTs and MOSFETs; Simple diode circuits: clipping, clamping and rectifiers; Single-stage BJT and MOSFET amplifiers: biasing, bias stability, mid-frequency small signal analysis and frequency response; BJT and MOSFET amplifiers: multi-stage, differential, feedback, power and operational; Simple op-amp circuits; Active filters; Sinusoidal oscillators: criterion for oscillation, single-transistor and op- amp configurations; Function generators, wave-shaping circuits and 555 timers; Voltage reference circuits; Power supplies: ripple removal and regulation.

Section 4: Digital Circuits

Number systems; Combinatorial circuits: Boolean algebra, minimization of functions using Boolean identities and Karnaugh map, logic gates and their static CMOS implementations, arithmetic circuits, code converters, multiplexers, decoders and PLAs; Sequential circuits: latches and flip-flops, counters, shift-registers and finite state machines; Data converters: sample and hold circuits, ADCs and DACs; Semiconductor memories: ROM, SRAM, DRAM; 8-bit microprocessor (8085): architecture, programming, memory and I/O interfacing.

Basic control system components; Feedback principle; Transfer function; Block diagram representation; Signal flow graph; Transient and steady-state analysis of LTI systems; Frequency response; Routh-Hurwitz and Nyquist stability criteria; Bode and root-locus plots; Lag, lead and lag-lead compensation; State variable model and solution of state equation of LTI systems.

Section 6: Electromagnetics

Elements of vector calculus: divergence and curl; Gauss' and Stokes' theorems, Maxwell's equations: differential and integral forms. Wave equation, Poynting vector. Plane waves: propagation through various media; reflection and refraction; phase and group velocity; skin depth. Transmission lines: characteristic impedance; impedance transformation; Smith chart; impedance matching; S parameters, pulse excitation. Waveguides: modes in rectangular waveguides; boundary conditions; cut-off frequencies; dispersion relations. Basics of propagation in dielectric waveguide and optical fibers. Basics of Antennas: Dipole antennas; radiation pattern; antenna gain.